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ABSTRACT 

■ 

I. 

A laminar wake model is studied which assumes that the boundary 

layer equations are valid in a shear layer on the axis of symmetry, and 

that the local pressure is determined by a displacement interaction with 

the inviscid outer flow.  The finite difference method used places no 

restrictions on th^ shape of the velocity profile. The qualitative 

features of the solution are the same as those found by previous investi- 

gators using integral methods, in that an otherwise arbitrary initial 

condition (the local fr-^e stream Mach number) is determined by the fact 

that only a particular value results in a physically meaningful solu- 

tion. Two methods of finding the particular solution are investigated. 

This research is a part of PROJECT DEFENDER, sponsored by the Advanced 
Research Projects Agency, Department of Defense, under ARPA Order No. 
254-62, monitored by Air Force Ballistic Systems Division under Contract 
AF04(694)-570. 
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A Finite Difference Method for Solving the Laminar 

Boundary Layer Equations Near a Wake Neck 

INTRODUCTION 

The qualitative features of the base flow region of supersonic blunt- 

based bodies, shown schematically in Fig. lv have been recognized for 

many years. Much of the early work was aimed at determining the base 

pressure, and It was generally agreed, long before any quantitative theory 

was available, that an interaction between the shear layer and the outer 

inviscid flow was important in determining its value. The Crocco-Lees 

mixing theory put this on a somewhat more quantitative basis. The model 

on which this theory is based assumes that the boundary layer equations 

are valid in the shear layer and that the local pressure is determined by 

a displacement interaction with the inviscid outer flow. The effects of 

the shear layer profiles are lumped into variables which must be deter- 

mined independently, so that the theory is incomplete. However, the 

qualif tve results show what behavior to expect from a more rigorous 

solution of the same model. They found that there were an infinite 

number of solutions to the equations, corresponding to all possible 

choices of the base pressure. However, the only one with physical mean- 

ing was the singular solution passing through a saddle-point type of 

singularity. The jr.ost familiar example of this type of behavior is in 

the calculation of flow through a one dimensional nozzle.  In that case, 

the governing equation is 

dM 1    dA 
M(l +    ^ MZV 

dx " A    dx 
(1   - M2) 

which can of course be integrated in closed form. However, if one 
1 dA 

chooses to consider -r   TZ as a  specified function of x, one can £ 
A dX 

the first order differential equation for any initial value of M, 

1. L, Crocco and L. Lees, "A Mixing Theory for the Interaction Between 
Dissipative Flows and Nearly Isentropic Streams," J. Aer. Sei. 19^, 
649-676 (1952). 
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If the required solution is to have M ^ 1 in the converging section and 
dA 

M ^ i in the diverging section, then M must pass thi-ough 1 and — 

through zero during the course of the calculation.  If the initial choice 

of M is too small, —will pass througi. zero first, after which -r- 

becomes negative and the flow is subsonic everywhere in tba nozzle. 

If the initial choice is too large M -. 1 first and the calculation ter- 

minates at M = 1, a solution with no physical meaning. The only solu- 

tion which becomes supersonic in the diverging section corresponds to 
dA -. 
-r-     0 and M * 1 simultaneously. 

This analogy is useful in obtaining an understanding of the nature 

of the wake critical point, but it should no*:  be. carried too far. For 

example, the pressure increases as the flow approaches the wake critical 

point, indicating that the acceleration of the low speed portion of the 

flow is produced by viscous forces, which are not present in the one 

•iimensional nozzle model. Relating the wake critical point to an aver- 

age Mach number of unity is therefore not justified. 

2 
Recently, Reeves and Lees investigated this wake model in more detail, 

using a two moment integral method to determine profile shape and wake 
3 

thickness. To insure the proper qualitative features, the Stewartson 

family of solutions to the Falkner-Skan eq- 'tion, f' C^-jß), was used to 

descril e the profile shape, — (  >Y) with i,, and v determined by the 

zero and flrsc moments of the momentum equation. Since a stagnation 

point on the centerline occurs for only a single value of y, the shape 

of the profile at the wake stagnation point is arbitrarily predeter- 

mined by the choice of the Stewartson family and only the wake thickness 

at this point is calculated. 

2. B. L. Reeves and L. Lees, "Theory of the Larcinar Near Wake of 
Slunt Bodies in Hypersonic Flow" presented at AIAA 2nd Aerospace 
Sciences Meeting, New York, January 1965, AIAA Paper No. 65-i52. 

3. K. Stewartson, "Further Solutions of the Falkner Skan Equation," 
Proc. Comb. Phil. Soc. 50, 454-465 (1954). 
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Webb, Golik, Vogenitz and Lees  investigated the model using the 
polynomial profiles 

u_ ', \2 , /, ^ 31 — +   1 -   — 3 H-   - 2     -M u5   \    u&y  L\%l     \\l 

and 

I , 

. 

u. 
'6/ 

\4n 

in which a two moment method was used to find and He e, again 

the profile shape at the wake stagnation point is predetermined by the 

choice of profile families. They then went one step further anJ used 
r 

the Stewartson family f'CirjP) to describe profile shape, using the 

following substitutions: 
f - Cu-uc)/(u5-uc) 

%      \ 

ß - Y 
u 

where — is now no longer related to y.  The third parameter was found 

using an additional moment of the momentum equation. 

The biggest drawback of the integral methods is that in order to 

get accurate results^ the family of profiles chosen mus be capable of 

a reasonably good representation of the actual profiles over the entire 

range of calculation.  Since the actual profiles are not generally known 

in advance, this requires the exercise of a considerable degree of judg- 

ment and intuition on the part of the investigator. In this particular 

problem, there is the additional obstacle of a gap between the body 

boundary layer and the neighborhood of the rear stagnation point, in 

which the boundary layer equations alone are clearly inadequate in 

describing the flow between the centerline and the outer inviscid flow. 

4. W.H. Webb, R.J. Golik, F.W. Vogenitz and Lester Lees, "A Multimoment 
Integral Theory of the Laminar Supersonic. Near Wake," Proc., 1965 
Heat Transfer and Fluid Mechanics Institute, p. 168, Stanford U. Pr-ss, 
Stanford, Calif., 1965. 
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Since a different methüd of calculation is required in this region, it 

is not li'uely that the profiles approaching the rear stagnation point 

will fit smoothly intc a preciiosen family, and it is not possible to 

^-se an integral method cplculation on an arbitrary initial profile. 

lliis paper describes E finite difference method for solving the 

boundary layer equations with the local pressure determined by a displace- 

ment interaction wUh the outside inviscid flow. There are no constraints 

on profile shape, and the calculation begins with an arbitrary profile 

at the wake stagnation point and proceeds downstream. The solutions ere 

found to fall into two families, depending on whether the initial loci 

inviscid Mach number is smaller or larger than the value corresponding 

to a singular solution. If the Mach number is smaller than this eigen- 

value, the wa^n centerline velocity increases ror only a short distance 

downstream, then decreases again until another stagnation point is 

reached, the flow past this point being in the direction of the body. 

If the initial local inviscid Mach number is larger than the eigenvalue, 

the shear layer thickness decreases at an accelerating rate, unt4.l the 

inviscid flow intersects the axis as the shear layer disappears. Both 

of these types of behavior are valid solutions to the aquations, but 

only the singular solution has the appropriate downstream behavior, 

that is, the wake velocity approaches the local freestream value. 

I 



EQUATIONS 

The coordinate system as shown in Fig. 1 employs didtances measured 

along the centerline and normal to it. The origin is at the base flow 

rear stagnation point. The calculations will be limited here to two 

dimensional, adiabatic, ideal gas, flow. The continuity and momentum 

equations 

pu 5u ov Su _ _5  äü . ^2. 
öy   öy ^ By ' dx (2) 

can be transformed into the form 

öS*      BY*   5Y*2 -   dS* p u ' 
e e 

— - u* 
.3 (3) 

where u* - u/u . e denoting conditions at shear layer edge. 

-■-ÜJ 

,* ■ "■   \ pudy 

Y* -  -i—\ p„ dy 

vPTJ  e 
o 

S~ \ Cp
P
u^e

dx where c " -f^T    (Chapman-Rubesin parameter, 
e e  assumed to be a function of 

x only) 

e e e 

EOS RN-28, 10-65 
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S = scale factor making equation dimenslc.ess 

For ideal gas conditions, the right side of Eq. (3) can be written 

dM 
dP    1   I ^i 
ds* v7 Lp S" ds^ ^ " u* ) (4) 

It is convenient, now, to further transform Eq, (3) into a les" familiar 

form, with dependent variable 

(5) 
:Y I Sui 1 hY*j 

and independent variables S*and u, whsre 

u* - u* 
»        c 
u = —: ~r~5 c denoting conditions at the centeriine 

l   -  U" 
c 

(6) 

I 
I 
I 
I 
I 
I 

r *i äs   r   G   1 ö2G J ru*(i - i 
lu*J tiS ■ "2      ^2 +   \jl^ 

L(l  - u*) _j    ou        |i-N c 

- u*)       c SG 
dM 

I - i- «I a-*z) f)       dS*      2(l-u*)    BÜ      M    dS* 

(1  - u*) 
ÖG        fj 
So      IM 

dM 4 e 
dS* u*      G (7) 

I 
I 

The boundary conditions appropriate to a wake are G(o) = G(l) = 0, 

The fixed location of the boundaries in the u coordinate greatly 

simplify the application of the finite difference method, and the use 
äu* 

of G instead of rn* as dependent variable makes it more convenient to 

satisfy the differential equation at the centeriine, where Eq, (7) 

reduces to 
.in* /  \ AMI uu* 

U* —^ 
c dS* 

1     I he] 1 ^e n .2. 
2(1 - u*) lä*  + M~ dS^ (1 -Uc > 

I 
J 

EOS kN-28, 10-65 
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1 

1 

1 • 

n 

i 

rS «Ty i i the advantage in using G as the 
C \       'C 

dependent variable becomes clear when it is realized that, while | r- 
' dx 

is zero,    ! gz- r~| Is infinite so that I ^r-1 generally has a finite 

value. 

Equation (7) is in a modified form of the Crocco coordinate system 

and, as is well known, solutions to the boundary layer equations in these 

coordinates are not unique, in that a single solution in the Crocco 

coordinates contains an infinite number of distinct solutions in the 

physical coordinates. This occurs because the usual third boundary 

condition (the location of a reference streamline) of the momentum 

equation in physical coordinates cannot be imposed in the Crocco coordin- 

ates, and the solutions corresponding to all possible values of this 

boundary condition map into a single Crocco solution. We wish, here, to 

remove the ambiguity of the solution of Eq. 7 by imposing the condition 

tha" the centerline (u = 0) is a streamline. Of the many possible ways 

of accomplishing this, we choose to use an integral of the momentum equa- 

tion, with [ ig I set equal to zero at Y = 0: 

_d 
dS* 

(i - u*) \ u* a - „*) iji-L . gi ^| (1 . u*\ (1 
v—       o ^ _> o 

(2) 

2. Aj. 

o 
du* dM 

An additional relation b^ween —rr=— and -— -r— is required t 
ds*-      M  ds      ^ 

e 
order to complete the specification of the problem. This is obtained 

from an integrated form of the continuity equation: 

where 

v 
e d6*        d  £n %% \ pu 

u e dx                 dx 

PS 

J 
0 

P6U5 

5* = \  (1 .-J^L)  dy 

dy « tan 9 (9) 

(10) 
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The logarithmic term in Eq. (9) is not bounded with increasing 

5, and since 6 is arbitrary, the inclusion of this term is difficult to 

justify within the framework of the boundary layer theory, and it will 

be neglected in these calculations. 

Equation (9), when transformed into the coordinate system of 

Eq. (3), becomes y 

Y-l  2, Y-] 

tan e   (11) 
_d 
dS* 

p u 6*' Jh 
.•fs; 

M 
U 

M" 
(1  

I 
i 

where it has been assumed for simplicity that u 
,1/2 

Subscript 

refers to a reference point in the flow, taken here to be at 9 = 0. 

The term — is like \(Re,  If the calculation were linked to a given 
'CO 

body, it would be convenient to divide this into a conventional 

Reynolds number and a factor dependent primarily on body shape, but 

for the present we will define 

D    
Sb 

Re ■ —T~ (12) 

B 

A transformation of the displacement thickness definition, Eq. (10) 

into the coordinate system of Eq. (3) gives: 

10 CD 

fs. 

M 
(1 - u*) ~ x    c Me 

3. + *—■ M 
Z      e 

1 +^i^)
2 

,-.   Y+l JLJ..^.,./— 
cTüfr 

(l-u*) 
du 

(13) 

where, it should be noted, both of the 8ht=>r layer integral functions 

are bounded. 

EOS RN-28, 10-65 
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A final relation is required between the local flow anjjle 6 and 

local inviscid Mach number M . This could be obtained by means of a 
e 

detailed calculation of the inviscid flow field, but for the purposes 

of these calculations, we will assume that this relation is given by 

the Prandtl-Meyer function: 

9 = ^ - JS (14) 

The equations presented in this section, along with the appropriate 

initial conditions, completely specify the problem. 

The momentum boundary layer equation (7) requires an initial G vs u 
1 ^e     duo 

profile, and auxilliary equations to evaluate u , — -TJTJ and -^^ . 

Equations (8), (11), (13) and (14) relate 

du*   , dM      \ fs^/ p^S* 
di^^ rii^'   "ds^  ' *t> Me'   r^—' and e 

e vfT 

If 9 is eliminated between Eqs. (14) and (II) and equation (13) is 

differentiated the three remaining equations could be thought of as 
Poo u^b* 

simultaneous ordinary differential equations for u*: M and      . 

fSb" 
where only two initial conditions are arbitrary because Eq, (13) pro- 

vides a relation between these and the third. Since one would normally 

know u* if he. knows the initial G vs. u profile, we.will consider 
c / p^u^sn 

(u*). ,  ,   , to be fixed, and then arbitrarily let          be v c'initial '     I r-z— / 
V N bb /initial 

specified by Eq. (13), leaving (M )..... as yet undetermined. M 

will then be the eigenvalue and will be chosen so that the solution far 

downstream has the appropriate behavior. 

EOS RN-28, 10-65 



METHOD OF SOLUTION 

I 
I 
3 

The momentum equation (7) can be solved readily by the use of an 

implicit finite difference method, with the accuracy limited only by 

the available computing time and computer memory size. Initial condi- 

tions are unrestricted except for the requirement that they satisfy the 

boundary conditions and not contain discontinuities.  Exceptions to 

these requirements can be successfully treated by using local analytical 

solutions, but we do not expect any such cases to arise in the current 

problem. The method uses the following finite difference approximations 

for the linear (not bracketed) terms in Eq. (7): 

a 

If ■     (G,      ...- G       )  /AS dS i,   j+l       i,j (15) 

ÖÜ2 
"  (G.^,   ,.,+ G_-   ,- 2  (G,   . ..+ G.   ,)  + G,   ,   . ..+ G.   .   ,)/2Au V^+ljj+l      i+l,j i,j+l      i.J' i-i,J+l      i-i,J 

is   ■ ^i+u+i* Gi-fi,j" Gi-i.j+i' G.^.j) / 4AG     (17) 

G=(Gi.j+l+Gi.j)/2 
(18) 

where i refers to the u coordinate 

j refers to the S coordinate 

The bracketed terms are evaluated at i,j for an initial iteration, the.i 

averaged between i,j and I,j+l for succeeding iterations until they con- 

verge to a limiting value. If N interior meshpoints in u are used, the 

EOS RN-28, 10-65 10 
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finite difference approximation to Equation (7) results in N simultan- 

eous linear algebraic equations for the unknown G, ... The equation 
i,J+l 

at each point refers to G... ... and G, , ... and therefore the equa- 
i+l,j+l     i-l,j+l M 

tions are coupled in such a way that the matrix of coefficients contains 

3 bands consisting of the diagonal, and the bands immediately above and 

below the diagonal.  Such a set of equations is very quickly and »asily 

solved by Gaussian elimination. 

The auxiliary equations are solved simultaneously with the momentum 

equation in the following sequence. 

/du*\ 
Guess 

lds*/j 

Calculate u* 
c J+l 

Solve the momentum equation,evaluating bracketed terras at j 

and using the previous ~ ■^~ for the first iteration. M 

fl    dMe\ 
4. Calculate I—^fj  ^ from Eq. (8), 

5, Repeat three and four using averaged values until converged. 

dM 
6. Calculate Me   by finite difference integration of -i —A 

r J   v M   dS 

7. Calculate | -^ 1   from Eq, (13). 

<fh~h HI 

[ p u B*1 

Evaluate "rrJ 
dS*l from Eq. (11) 

b 'j+l/2 

9. Compare the finite difference derivative 

'p u 6*i 

^T/j+l  \ M 3b 

with that evaluated in Step 8. 

EOS RN-28, 10-65 11 



10. Use a systematic iteration procedure to guess a new 

which will give better agreement than in step 9 and repeat 

from Step 1 to convergence. 

.1+1/2 

The modified Newton's method used for iterating on (jg*)    generally 

converges to 5 figures in about 4 iteration« 

/du-'A 

\  /J+l/2 

The principal drawback of the method is due to Step 9, where a finite 

difference derivative is required. In order for this difference to main- 

tain significance, the profiles which determine &* must be considerably 

more accurate then one would normally require and the calculation there- 

fore more time-consuming. 

I 

I 
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RESULTS 

Typical results of this method of calculation are shown in Figs. 

(2) and (3), The initial profile used was, for convenience, one of 

the Stewarcson family tabulated by Kennedy, where f" (f',ß)-\JG~(ü,-.1988) 
6 c 

with Ro=lCrand Mp=6. Figure (2) shows the behavior of -rrr corresponding to 
^-oo ai>   du* 

different assumed eigenvalues. When Meo is too large,   -rzg begins to 

increase rapidly at some point in the calculation. This is accompanied 

by an increase in — -TT^ toward infinity from its initially negative 

value, as shown in F^g. (3). The centerline velocity is therefore 

increasing rapidly at the same time that the inviscid flow just outside 

the shear layer is turning rapidly in toward the axis of symmetry.  In 

the limit, ths shear layer disappears entirely as the Inviscid flow 

intersects the axis. This limit is reached at a finite distance down- 

stream and constitutes a barrier past which the calculation cannot pro- 
du* 

ceed. When the assumod eigenvalue M^ is too small, -j^ becomes nega- 

tive at some point in the calculation, after which ths centerline velocity 

ratio decreases until a second stagnation point is reached, the flow on 

the centerline past this point having its origin downstream rather than 

upstream. 

Only the eig^n- solution belongs to neither of these two families 

of non-physical solutions. The source of this singular behavior can be 

more easily seen by differentiating equarior (13), and combining with 

J Eq» (11) to get an equation of the form: 

r dM      du* 
ai dst + a2 d#=a3 (19) 

5. E.D Kennedy •'Wake-Like Solutions to the Laminar Boundary Layer 
Equations," AIM J. 2, 225-231 (1964). 
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^e   a3b2 - a7b3   Nl (21) 

(22) 

initial profile at the wake stagnation point (u - 0) and the calculated 

profile at u = .3 u are shown. The inltiai. conditior.s coincide with c    e 
one of the Stewartson family (ß = -,1988). The shapes of other Stewart- 

son profiles, also plotted in Fig. 4 (ß = -.40, -.50) show clearly that 

this family very accurately represents the calculated non-similar pro- 

EöS RN-28, 10-65 14 
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where a , a and a. contain no S*  derivatives (the ^-p* from tJie displace- 

ment thickness integrals can be eliminated by using the momentum equa- 

tion). Equation (8) has the same forn; (again eliminating zr^^  using ti 

momentum equation) : 

dM      du* 
bld5f + b2 d^b3 <20> 

dM     du* 
e      c 

and these two equations solved for -r^ and -rr^ give: 

dS*   a1b2 - a2D1    D 

^| . aib3 - a3bl . ^2 
dS* ~ 3^2 - a2b1    D 

Initiallyj N0 and D have a like sign, N the opposite sign. When M 
/ I e0 

is too large, HL changes sign first, then D approaches zero so that 
JW      äu* •'■ 
Z5 - co  -,=£ -oo.   When ML is too small, N„ changes sign first and 
dS*   ' ab~ co z 
the centerline velocity decreases, then D approaches zero. The eigen 

solution has N.. and D (and therefore N-) changing sign simultaneously. 

It should be noted that if one of .ilie equations ^19) or (20) were to be 

eliminated by specifying either -rrj (S*) or -r-^ (S*), the singular 

behavior would no longer occur. This suggests an alternate method of 

solution of the equations 'hich is described in Appendix I. 

Of particular interest to those using the integral method?, is the 

profile shape obtained by the finite difference mecuod. A convenient 

way of presenting the shape i_ to plot G/G   vs. u, as in Fig. 4. The 

Ll 

■■■■ 



files. However, it slioi'ld be remembered that the use of a Stewartson 

profile shape at the wake stagnation point was arbitrary and there is 

some doubt that such a choice is r-^listic. 

This study has shown that this particular viscous interaction 

problem can be solved in a straightforward manner using a finite differ- 

ence method. A considerable effort has been made to extend the method 

of calculation to regions cr  reverse flow, without success. Several 

hybrid methods have been investigated, in which integrals of the conser- 

vation equations are used in the reverse flow region and finite d infer- 

ences are used elsewhere. All of these attempts failed because the 

profile shapes ufed for the integral method did not have the proper 

qualitative features. This sensitivity to ehe details of the profile 

shape in the reverse flow region was also pointed out by Webb, et al , 

who used a momentum integral method over the entire shear layer. The 

results of an integral method are in doubt whenever such sensitivity 

exists, so it appears that additional work is needed in the region 

between the body and tne wake stagnation point before any quantitative 

results can be obtaivied from the interaction model. 

Ü 

: 

: ] 

i 
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APPENDIX I 

INVERSE METHOD 

Computing through a saddle point singularity is difficult even if 

the equations are simple in form since the eigenvalue can be c'5und only 

to a limited number of significant figures.  Assuming that one is then 

close enc'gh to the critical point to make some kird of extrapolation 

valid, the calculation can be restarted on the other side and proceed 

from there without difficulty. However, when a partial differential 

equation is Included in the set of equations, the computing time 

involved in this procedure can become excessive. A considerable saving 

in time would result fron a method which did not require that such a 

large number of significant figures be carried. 

The method which will be described here has this property, and 

consists essentially of guessing j^CS*) and solving the momentum 

equation, using Eq. (8) to give — -T£  . The remainin", auxiliary 

equations are not satisfied (that is  d( ^Jim     )/dS^ from Eq. (11) does 
0 u 6* sPb du* 

not agree with A( rg ca~)/LS*  from Eq. (13), and a new guess of 555 (S*) 

is made in such a way that agreement impioves in succeeding iterations. 

There Is no guarantee of convergence and '•.he key to the method is, 

obviously, the type of iteration used. 
du* 

For any given guess of gg^f (S*), the momentum equat?  and Eq. (8) 
dM 

can be solved for G(M,S*), u*(S*) and - dS* 
(S*). The „mtial condi- 

tions required for this solution are G(a,o) and u*(0). The values of 
^ -i  dM 

M (S*) do not appear in these equations, so that — ;jg£ (S*) is found 

wi ̂out specifying M anywhere. The initial condition needed to inte- 

grate — -rrr  (S*) can .herffore be applied at anv value of 3*. The 
Mg Ob* 

elgen-solution we are seeking Ms M - M at the origin and M "• M 6 e     a  eo e  eo, 
asymptotically far downstream. Since M ^ is known, we will integrate 

—- "^^(S*) in the upstream direction, assuming that the domain has 
M  uS" 
been chosen large enough to make the asymptotic value of M reasonable 

at the downstream end.  Since M Coo)-*!  only for the eigen-solution. 

0 

u 

■ 

Ü 

D 
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this means that if the procedure converges at all, it must converge to 

the desired solution. 
,  dM 

A 
The fact thaf the differential equation and rrr- (S*)  are 1 Me dS* 

v  y 

integrated in oppos'te directions introduces the major difficulty 

encountered in applying the method, since it makes it impractical to 

use a straightforward iteration scheme such as Newton's method.  If they 
du* 

were integrated in the same direction, a local change in -rrr would affect 

Eqs. II and 13 only downstream of the point, whereas, when they are 

integrated in opposite direcions, the change is felt downstream due to 
du* 

the change in -r^x- and upstream due to the effect on all preceUmg values 

of M . The iteration method used was the simplest possible; a complete 
e du* 

calculation was made using the current guess of -^—(S*), and a second com- 

plete calculation was made using 1+3 times the current guess (where £«1). 

The results of these two calculations were used to make a point oy point 
dug 

linear extrapolation to that value of -jrj giving agreement between 

equations 11 and 13. All of the indicated changes in -rrrr were then 
db« 

reduced by a factor which decreased the largest fractional change to 

ßCß^)« There is no mathematical foundation for this iteration scheme, 

but a rigorous extrapolation is so much more difficult that it was 

decided to try this first. How veil the method actually works is illus- 

trated in Figure 5. The problem here is the same as the one used to 

demonstrate the direct method calculatior.. Where the eigenvalue was 

found to be M„ =6.55. The domain was taken to extend from S*=0 to eo du* 
S*=1.5 (at which point M =M =6.0), The initial guess of -r-r was 

e eoo dS" 
taken to be 0.3 everywhere. Initially, values of ß = .2, e = ,05 were 

used. To speed convergence, ß was changed to .05 after 8 iterations. 

About 15 iterations wer^ re . ired to find the eigen-value to the same 

number ■** significant figures as the direct method. The agreement after 
PooUoo 5* 

20 iterations between —>g—■■■ calculated from Eq. 11 with that calcu- 

lated from Eq,  13 is shown in Fig. 6. This agreement was very good 

near the origin, and was poorest at about S*>=.9. Further iterations 

failed to improve the agreement (which is hardly surprising considering 

EOS RN-28, 10-65 17 



du*        dM p 
the iteration method used). The values of 7—7 and -~- —~  found are 

aS,v    M aS* tl 
compared with the.direct method results in Figs. 7 an! 8. The agrasraent 

between  d(-j=^-)/dS* frotr quation 11 with A(-7S^)/AS* from Equation 13 

was best near the origin and was poorest at about S*=.7. In the region 

between the origin and the last point plotted in Figs. 7 and 8, the maxi- 

mum discrepancy between the two values is 10 /o. 

It is interesting to note that the direct method solution could not 

be carried beyond S*=.3 when four significant figures were required of 

the profiles, while the indirect method, requiring the same number of 

significant figures, was reasonably accurate to S*  = .5.  In addition, 

the errors in agreement between d ( "TgT )/dS* and the finite differences 

derivative appear to be distributed in such a way that the displacement 

thicknesses far downstream, when calculated in the two different ways as 

shown in Fig. 6, agree quite well. 

The most surprising feature of this method is that it works at all, 

even without considering the crudnessof the iteration scheme. The biggest 

drawback is that the degree of convergence is limited, but it is possible 

that this can be improved by refining the iteration procedure. 
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SHOCK 

-frVIDING STREAMLINE 

FIG.   1    BASF FLOW REGION 
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FIG. 2 du*/dS* FOR Meo CLOSE TO THE EIGENVALUE 
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FIG. 3 dlnHg/dS* FOR Meo CLOSE TO THE EIGENVALUE 
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FIG. 4 

COMPARISON BETWEEN PROFILE SHAPES 
FROM THE NON-SIMILAR CALCULATION 
AND THOSE FROM THE STEWARTSON- 
KENNEDY SIMILAR SOLUTION 

FIG. 5 

RATE OF CONVERGENCE 
TO THE EIGENVALUE 
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CONVERGENCE OF INVERSE 
METHOD, 20 ITERATIONS 
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FIG. 7 COMPARISON OF DIRECT AND INVERSE METHODS, du*/dS* 
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